Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Gradient descent avoids strict saddles with a simple line-search method too (2507.13804v1)

Published 18 Jul 2025 in math.OC, cs.NA, math.DS, and math.NA

Abstract: It is known that gradient descent (GD) on a $C2$ cost function generically avoids strict saddle points when using a small, constant step size. However, no such guarantee existed for GD with a line-search method. We provide one for a modified version of the standard Armijo backtracking method with generic, arbitrarily large initial step size. In contrast to previous works, our analysis does not require a globally Lipschitz gradient. We extend this to the Riemannian setting (RGD), assuming the retraction is real analytic (though the cost function still only needs to be $C2$). In closing, we also improve guarantees for RGD with a constant step size in some scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: