Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Judge Variable: Challenging Judge-Agnostic Legal Judgment Prediction (2507.13732v1)

Published 18 Jul 2025 in cs.CL and cs.LG

Abstract: This study examines the role of human judges in legal decision-making by using machine learning to predict child physical custody outcomes in French appellate courts. Building on the legal realism-formalism debate, we test whether individual judges' decision-making patterns significantly influence case outcomes, challenging the assumption that judges are neutral variables that apply the law uniformly. To ensure compliance with French privacy laws, we implement a strict pseudonymization process. Our analysis uses 18,937 living arrangements rulings extracted from 10,306 cases. We compare models trained on individual judges' past rulings (specialist models) with a judge-agnostic model trained on aggregated data (generalist models). The prediction pipeline is a hybrid approach combining LLMs for structured feature extraction and ML models for outcome prediction (RF, XGB and SVC). Our results show that specialist models consistently achieve higher predictive accuracy than the general model, with top-performing models reaching F1 scores as high as 92.85%, compared to the generalist model's 82.63% trained on 20x to 100x more samples. Specialist models capture stable individual patterns that are not transferable to other judges. In-Domain and Cross-Domain validity tests provide empirical support for legal realism, demonstrating that judicial identity plays a measurable role in legal outcomes. All data and code used will be made available.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube