Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Kolmogorov-Arnold Networks-based GRU and LSTM for Loan Default Early Prediction (2507.13685v1)

Published 18 Jul 2025 in cs.LG

Abstract: This study addresses a critical challenge in time series anomaly detection: enhancing the predictive capability of loan default models more than three months in advance to enable early identification of default events, helping financial institutions implement preventive measures before risk events materialize. Existing methods have significant drawbacks, such as their lack of accuracy in early predictions and their dependence on training and testing within the same year and specific time frames. These issues limit their practical use, particularly with out-of-time data. To address these, the study introduces two innovative architectures, GRU-KAN and LSTM-KAN, which merge Kolmogorov-Arnold Networks (KAN) with Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) networks. The proposed models were evaluated against the baseline models (LSTM, GRU, LSTM-Attention, and LSTM-Transformer) in terms of accuracy, precision, recall, F1 and AUC in different lengths of feature window, sample sizes, and early prediction intervals. The results demonstrate that the proposed model achieves a prediction accuracy of over 92% three months in advance and over 88% eight months in advance, significantly outperforming existing baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.