Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reading Between the Lines: Combining Pause Dynamics and Semantic Coherence for Automated Assessment of Thought Disorder (2507.13551v1)

Published 17 Jul 2025 in cs.CL and cs.AI

Abstract: Formal thought disorder (FTD), a haLLMark of schizophrenia spectrum disorders, manifests as incoherent speech and poses challenges for clinical assessment. Traditional clinical rating scales, though validated, are resource-intensive and lack scalability. Automated speech analysis with automatic speech recognition (ASR) allows for objective quantification of linguistic and temporal features of speech, offering scalable alternatives. The use of utterance timestamps in ASR captures pause dynamics, which are thought to reflect the cognitive processes underlying speech production. However, the utility of integrating these ASR-derived features for assessing FTD severity requires further evaluation. This study integrates pause features with semantic coherence metrics across three datasets: naturalistic self-recorded diaries (AVH, n = 140), structured picture descriptions (TOPSY, n = 72), and dream narratives (PsyCL, n = 43). We evaluated pause related features alongside established coherence measures, using support vector regression (SVR) to predict clinical FTD scores. Key findings demonstrate that pause features alone robustly predict the severity of FTD. Integrating pause features with semantic coherence metrics enhanced predictive performance compared to semantic-only models, with integration of independent models achieving correlations up to \r{ho} = 0.649 and AUC = 83.71% for severe cases detection (TOPSY, with best \r{ho} = 0.584 and AUC = 79.23% for semantic-only models). The performance gains from semantic and pause features integration held consistently across all contexts, though the nature of pause patterns was dataset-dependent. These findings suggest that frameworks combining temporal and semantic analyses provide a roadmap for refining the assessment of disorganized speech and advance automated speech analysis in psychosis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com