Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Whose View of Safety? A Deep DIVE Dataset for Pluralistic Alignment of Text-to-Image Models (2507.13383v1)

Published 15 Jul 2025 in cs.LG, cs.AI, and cs.CV

Abstract: Current text-to-image (T2I) models often fail to account for diverse human experiences, leading to misaligned systems. We advocate for pluralistic alignment, where an AI understands and is steerable towards diverse, and often conflicting, human values. Our work provides three core contributions to achieve this in T2I models. First, we introduce a novel dataset for Diverse Intersectional Visual Evaluation (DIVE) -- the first multimodal dataset for pluralistic alignment. It enable deep alignment to diverse safety perspectives through a large pool of demographically intersectional human raters who provided extensive feedback across 1000 prompts, with high replication, capturing nuanced safety perceptions. Second, we empirically confirm demographics as a crucial proxy for diverse viewpoints in this domain, revealing significant, context-dependent differences in harm perception that diverge from conventional evaluations. Finally, we discuss implications for building aligned T2I models, including efficient data collection strategies, LLM judgment capabilities, and model steerability towards diverse perspectives. This research offers foundational tools for more equitable and aligned T2I systems. Content Warning: The paper includes sensitive content that may be harmful.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 58 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com