Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SpectraLift: Physics-Guided Spectral-Inversion Network for Self-Supervised Hyperspectral Image Super-Resolution (2507.13339v1)

Published 17 Jul 2025 in eess.IV and cs.CV

Abstract: High-spatial-resolution hyperspectral images (HSI) are essential for applications such as remote sensing and medical imaging, yet HSI sensors inherently trade spatial detail for spectral richness. Fusing high-spatial-resolution multispectral images (HR-MSI) with low-spatial-resolution hyperspectral images (LR-HSI) is a promising route to recover fine spatial structures without sacrificing spectral fidelity. Most state-of-the-art methods for HSI-MSI fusion demand point spread function (PSF) calibration or ground truth high resolution HSI (HR-HSI), both of which are impractical to obtain in real world settings. We present SpectraLift, a fully self-supervised framework that fuses LR-HSI and HR-MSI inputs using only the MSI's Spectral Response Function (SRF). SpectraLift trains a lightweight per-pixel multi-layer perceptron (MLP) network using ($i$)~a synthetic low-spatial-resolution multispectral image (LR-MSI) obtained by applying the SRF to the LR-HSI as input, ($ii$)~the LR-HSI as the output, and ($iii$)~an $\ell_1$ spectral reconstruction loss between the estimated and true LR-HSI as the optimization objective. At inference, SpectraLift uses the trained network to map the HR-MSI pixel-wise into a HR-HSI estimate. SpectraLift converges in minutes, is agnostic to spatial blur and resolution, and outperforms state-of-the-art methods on PSNR, SAM, SSIM, and RMSE benchmarks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.