Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 51 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Detecting LLM-generated Code with Subtle Modification by Adversarial Training (2507.13123v1)

Published 17 Jul 2025 in cs.SE

Abstract: With the rapid development of LLMs, their powerful code-generation capabilities have been widely applied in tasks like code completion and automated development, demonstrating the value of improving coding efficiency. However, the extensive use of LLM-generated code also raises several new challenges. On the one hand, issues such as the regulation of code provenance, copyright disputes, and code quality have become increasingly concerning. How to effectively detect LLM-generated code and ensure its compliant and responsible use has become a critical and urgent issue. On the other hand, in practical applications, LLM-generated code is often subject to manual modifications, such as variable renaming or structural adjustments. Although some recent studies have proposed training-based and zero-shot methods for detecting LLM-generated code, these approaches show insufficient robustness when facing modified LLM-generated code, and there is a lack of an effective solution. To address the real-world scenario where LLM-generated code may undergo minor modifications, we propose CodeGPTSensor+, an enhanced version of CodeGPTSensor, which employs adversarial training to improve robustness against input perturbations. CodeGPTSensor+ integrates an adversarial sample generation module, Multi-objective Identifier and Structure Transformation (MIST), which systematically generates both high-quality and representative adversarial samples. This module effectively enhances the model's resistance against diverse adversarial attacks. Experimental results on the HMCorp dataset demonstrate that CodeGPTSensor+ significantly improves detection accuracy on the adversarial test set while maintaining high accuracy on the original test set, showcasing superior robustness compared to CodeGPTSensor.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.