Papers
Topics
Authors
Recent
2000 character limit reached

Improving Drug Identification in Overdose Death Surveillance using Large Language Models

Published 16 Jul 2025 in cs.CL and q-bio.QM | (2507.12679v1)

Abstract: The rising rate of drug-related deaths in the United States, largely driven by fentanyl, requires timely and accurate surveillance. However, critical overdose data are often buried in free-text coroner reports, leading to delays and information loss when coded into ICD (International Classification of Disease)-10 classifications. Natural language processing (NLP) models may automate and enhance overdose surveillance, but prior applications have been limited. A dataset of 35,433 death records from multiple U.S. jurisdictions in 2020 was used for model training and internal testing. External validation was conducted using a novel separate dataset of 3,335 records from 2023-2024. Multiple NLP approaches were evaluated for classifying specific drug involvement from unstructured death certificate text. These included traditional single- and multi-label classifiers, as well as fine-tuned encoder-only LLMs such as Bidirectional Encoder Representations from Transformers (BERT) and BioClinicalBERT, and contemporary decoder-only LLMs such as Qwen 3 and Llama 3. Model performance was assessed using macro-averaged F1 scores, and 95% confidence intervals were calculated to quantify uncertainty. Fine-tuned BioClinicalBERT models achieved near-perfect performance, with macro F1 scores >=0.998 on the internal test set. External validation confirmed robustness (macro F1=0.966), outperforming conventional machine learning, general-domain BERT models, and various decoder-only LLMs. NLP models, particularly fine-tuned clinical variants like BioClinicalBERT, offer a highly accurate and scalable solution for overdose death classification from free-text reports. These methods can significantly accelerate surveillance workflows, overcoming the limitations of manual ICD-10 coding and supporting near real-time detection of emerging substance use trends.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.