Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Is This Just Fantasy? Language Model Representations Reflect Human Judgments of Event Plausibility (2507.12553v1)

Published 16 Jul 2025 in cs.CL and cs.AI

Abstract: LLMs (LMs) are used for a diverse range of tasks, from question answering to writing fantastical stories. In order to reliably accomplish these tasks, LMs must be able to discern the modal category of a sentence (i.e., whether it describes something that is possible, impossible, completely nonsensical, etc.). However, recent studies have called into question the ability of LMs to categorize sentences according to modality (Michaelov et al., 2025; Kauf et al., 2023). In this work, we identify linear representations that discriminate between modal categories within a variety of LMs, or modal difference vectors. Analysis of modal difference vectors reveals that LMs have access to more reliable modal categorization judgments than previously reported. Furthermore, we find that modal difference vectors emerge in a consistent order as models become more competent (i.e., through training steps, layers, and parameter count). Notably, we find that modal difference vectors identified within LM activations can be used to model fine-grained human categorization behavior. This potentially provides a novel view into how human participants distinguish between modal categories, which we explore by correlating projections along modal difference vectors with human participants' ratings of interpretable features. In summary, we derive new insights into LM modal categorization using techniques from mechanistic interpretability, with the potential to inform our understanding of modal categorization in humans.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com