Papers
Topics
Authors
Recent
2000 character limit reached

Quadratic Volatility from the Pöschl-Teller Potential and Hyperbolic Geometry (2507.12501v1)

Published 16 Jul 2025 in q-fin.PR, math.DG, and quant-ph

Abstract: This investigation establishes a formal equivalence between the generalized Black-Scholes equation under a Quadratic Normal Volatility (QNV) specification and the stationary Schr\"odinger equation for a hyperbolic P\"oschl-Teller potential. A sequence of canonical transformations maps the financial pricing operator to a quantum Hamiltonian, revealing the volatility smile as a direct manifestation of diffusion on a hyperbolic manifold whose geometry is classified by the discriminant of the QNV polynomial. We perform a complete spectral analysis of the financial Hamiltonian, deriving its discrete and continuous spectra and constructing the pricing kernel from the resulting eigenfunctions, which are given by classical special functions. This analytical framework, grounded in a gauge-theoretic perspective, furnishes a non-trivial benchmark for derivative pricing and provides a fundamental geometric interpretation of market anomalies. Future research trajectories toward integrable systems and formal field-theoretic analogies are identified.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.