Spatially Grounded Explanations in Vision Language Models for Document Visual Question Answering (2507.12490v1)
Abstract: We introduce EaGERS, a fully training-free and model-agnostic pipeline that (1) generates natural language rationales via a vision LLM, (2) grounds these rationales to spatial sub-regions by computing multimodal embedding similarities over a configurable grid with majority voting, and (3) restricts the generation of responses only from the relevant regions selected in the masked image. Experiments on the DocVQA dataset demonstrate that our best configuration not only outperforms the base model on exact match accuracy and Average Normalized Levenshtein Similarity metrics but also enhances transparency and reproducibility in DocVQA without additional model fine-tuning.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.