Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Probing for Arithmetic Errors in Language Models (2507.12379v1)

Published 16 Jul 2025 in cs.CL and cs.AI

Abstract: We investigate whether internal activations in LLMs can be used to detect arithmetic errors. Starting with a controlled setting of 3-digit addition, we show that simple probes can accurately decode both the model's predicted output and the correct answer from hidden states, regardless of whether the model's output is correct. Building on this, we train lightweight error detectors that predict model correctness with over 90% accuracy. We then extend our analysis to structured chain-of-thought traces on addition-only GSM8K problems and find that probes trained on simple arithmetic generalize well to this more complex setting, revealing consistent internal representations. Finally, we demonstrate that these probes can guide selective re-prompting of erroneous reasoning steps, improving task accuracy with minimal disruption to correct outputs. Our findings suggest that arithmetic errors can be anticipated from internal activations alone, and that simple probes offer a viable path toward lightweight model self-correction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 20 likes.

alphaXiv

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube