Papers
Topics
Authors
Recent
2000 character limit reached

Cluster Contrast for Unsupervised Visual Representation Learning (2507.12359v1)

Published 16 Jul 2025 in cs.CV and cs.AI

Abstract: We introduce Cluster Contrast (CueCo), a novel approach to unsupervised visual representation learning that effectively combines the strengths of contrastive learning and clustering methods. Inspired by recent advancements, CueCo is designed to simultaneously scatter and align feature representations within the feature space. This method utilizes two neural networks, a query and a key, where the key network is updated through a slow-moving average of the query outputs. CueCo employs a contrastive loss to push dissimilar features apart, enhancing inter-class separation, and a clustering objective to pull together features of the same cluster, promoting intra-class compactness. Our method achieves 91.40% top-1 classification accuracy on CIFAR-10, 68.56% on CIFAR-100, and 78.65% on ImageNet-100 using linear evaluation with a ResNet-18 backbone. By integrating contrastive learning with clustering, CueCo sets a new direction for advancing unsupervised visual representation learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.