Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Iterative Augmentation with Summarization Refinement (IASR) Evaluation for Unstructured Survey data Modeling and Analysis (2507.12126v1)

Published 16 Jul 2025 in cs.CL and cs.LG

Abstract: Text data augmentation is a widely used strategy for mitigating data sparsity in NLP, particularly in low-resource settings where limited samples hinder effective semantic modeling. While augmentation can improve input diversity and downstream interpretability, existing techniques often lack mechanisms to ensure semantic preservation during large-scale or iterative generation, leading to redundancy and instability. This work introduces a principled evaluation framework for LLM based text augmentation, comprising two components: (1) Scalability Analysis, which measures semantic consistency as augmentation volume increases, and (2) Iterative Augmentation with Summarization Refinement (IASR), which evaluates semantic drift across recursive paraphrasing cycles. Empirical evaluations across state-of-the-art LLMs show that GPT-3.5 Turbo achieved the best balance of semantic fidelity, diversity, and generation efficiency. Applied to a real-world topic modeling task using BERTopic with GPT-enhanced few-shot labeling, the proposed approach results in a 400% increase in topic granularity and complete elimination of topic overlaps. These findings validated the utility of the proposed frameworks for structured evaluation of LLM-based augmentation in practical NLP pipelines.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube