Papers
Topics
Authors
Recent
2000 character limit reached

Style Composition within Distinct LoRA modules for Traditional Art (2507.11986v1)

Published 16 Jul 2025 in cs.CV

Abstract: Diffusion-based text-to-image models have achieved remarkable results in synthesizing diverse images from text prompts and can capture specific artistic styles via style personalization. However, their entangled latent space and lack of smooth interpolation make it difficult to apply distinct painting techniques in a controlled, regional manner, often causing one style to dominate. To overcome this, we propose a zero-shot diffusion pipeline that naturally blends multiple styles by performing style composition on the denoised latents predicted during the flow-matching denoising process of separately trained, style-specialized models. We leverage the fact that lower-noise latents carry stronger stylistic information and fuse them across heterogeneous diffusion pipelines using spatial masks, enabling precise, region-specific style control. This mechanism preserves the fidelity of each individual style while allowing user-guided mixing. Furthermore, to ensure structural coherence across different models, we incorporate depth-map conditioning via ControlNet into the diffusion framework. Qualitative and quantitative experiments demonstrate that our method successfully achieves region-specific style mixing according to the given masks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.