Context-Aware Search and Retrieval Over Erasure Channels (2507.11894v1)
Abstract: This paper introduces and analyzes a search and retrieval model that adopts key semantic communication principles from retrieval-augmented generation. We specifically present an information-theoretic analysis of a remote document retrieval system operating over a symbol erasure channel. The proposed model encodes the feature vector of a query, derived from term-frequency weights of a language corpus by using a repetition code with an adaptive rate dependent on the contextual importance of the terms. At the decoder, we select between two documents based on the contextual closeness of the recovered query. By leveraging a jointly Gaussian approximation for both the true and reconstructed similarity scores, we derive an explicit expression for the retrieval error probability, i.e., the probability under which the less similar document is selected. Numerical simulations on synthetic and real-world data (Google NQ) confirm the validity of the analysis. They further demonstrate that assigning greater redundancy to critical features effectively reduces the error rate, highlighting the effectiveness of semantic-aware feature encoding in error-prone communication settings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.