Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Scaling laws for activation steering with Llama 2 models and refusal mechanisms (2507.11771v1)

Published 15 Jul 2025 in cs.LG

Abstract: As LLMs evolve in complexity and capability, the efficacy of less widely deployed alignment techniques are uncertain. Building on previous work on activation steering and contrastive activation addition (CAA), this paper explores the effectiveness of CAA with model scale using the family of Llama 2 models (7B, 13B, and 70B). CAA works by finding desirable 'directions' in the model's residual stream vector space using contrastive pairs (for example, hate to love) and adding this direction to the residual stream during the forward pass. It directly manipulates the residual stream and aims to extract features from LLMs to better control their outputs. Using answer matching questions centered around the refusal behavior, we found that 1) CAA is most effective when applied at early-mid layers. 2) The effectiveness of CAA diminishes with model size. 3) Negative steering has more pronounced effects than positive steering across all model sizes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.