Enhancing Safe and Controllable Protein Generation via Knowledge Preference Optimization (2507.10923v1)
Abstract: Protein LLMs have emerged as powerful tools for sequence generation, offering substantial advantages in functional optimization and denovo design. However, these models also present significant risks of generating harmful protein sequences, such as those that enhance viral transmissibility or evade immune responses. These concerns underscore critical biosafety and ethical challenges. To address these issues, we propose a Knowledge-guided Preference Optimization (KPO) framework that integrates prior knowledge via a Protein Safety Knowledge Graph. This framework utilizes an efficient graph pruning strategy to identify preferred sequences and employs reinforcement learning to minimize the risk of generating harmful proteins. Experimental results demonstrate that KPO effectively reduces the likelihood of producing hazardous sequences while maintaining high functionality, offering a robust safety assurance framework for applying generative models in biotechnology.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.