FPC-Net: Revisiting SuperPoint with Descriptor-Free Keypoint Detection via Feature Pyramids and Consistency-Based Implicit Matching (2507.10770v1)
Abstract: The extraction and matching of interest points are fundamental to many geometric computer vision tasks. Traditionally, matching is performed by assigning descriptors to interest points and identifying correspondences based on descriptor similarity. This work introduces a technique where interest points are inherently associated during detection, eliminating the need for computing, storing, transmitting, or matching descriptors. Although the matching accuracy is marginally lower than that of conventional approaches, our method completely eliminates the need for descriptors, leading to a drastic reduction in memory usage for localization systems. We assess its effectiveness by comparing it against both classical handcrafted methods and modern learned approaches.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.