TaylorPODA: A Taylor Expansion-Based Method to Improve Post-Hoc Attributions for Opaque Models (2507.10643v1)
Abstract: Existing post-hoc model-agnostic methods generate external explanations for opaque models, primarily by locally attributing the model output to its input features. However, they often lack an explicit and systematic framework for quantifying the contribution of individual features. Building on the Taylor expansion framework introduced by Deng et al. (2024) to unify existing local attribution methods, we propose a rigorous set of postulates -- "precision", "federation", and "zero-discrepancy" -- to govern Taylor term-specific attribution. Guided by these postulates, we introduce TaylorPODA (Taylor expansion-derived imPortance-Order aDapted Attribution), which incorporates an additional "adaptation" property. This property enables alignment with task-specific goals, especially in post-hoc settings lacking ground-truth explanations. Empirical evaluations demonstrate that TaylorPODA achieves competitive results against baseline methods, providing principled and visualization-friendly explanations. This work represents a step toward the trustworthy deployment of opaque models by offering explanations with stronger theoretical grounding.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.