Enhanced DeepONet for 1-D consolidation operator learning: an architectural investigation (2507.10368v1)
Abstract: Deep Operator Networks (DeepONets) have emerged as a powerful surrogate modeling framework for learning solution operators in PDE-governed systems. While their use is expanding across engineering disciplines, applications in geotechnical engineering remain limited. This study systematically evaluates several DeepONet architectures for the one-dimensional consolidation problem. We initially consider three architectures: a standard DeepONet with the coefficient of consolidation embedded in the branch net (Models 1 and 2), and a physics-inspired architecture with the coefficient embedded in the trunk net (Model 3). Results show that Model 3 outperforms the standard configurations (Models 1 and 2) but still has limitations when the target solution (excess pore pressures) exhibits significant variation. To overcome this limitation, we propose a Trunknet Fourier feature-enhanced DeepONet (Model 4) that addresses the identified limitations by capturing rapidly varying functions. All proposed architectures achieve speedups ranging from 1.5 to 100 times over traditional explicit and implicit solvers, with Model 4 being the most efficient. Larger computational savings are expected for more complex systems than the explored 1D case, which is promising. Overall, the study highlights the potential of DeepONets to enable efficient, generalizable surrogate modeling in geotechnical applications, advancing the integration of scientific machine learning in geotechnics, which is at an early stage.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.