Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MoCap-Impute: A Comprehensive Benchmark and Comparative Analysis of Imputation Methods for IMU-based Motion Capture Data (2507.10334v1)

Published 14 Jul 2025 in cs.LG

Abstract: Motion capture (MoCap) data from wearable Inertial Measurement Units (IMUs) is vital for applications in sports science, but its utility is often compromised by missing data. Despite numerous imputation techniques, a systematic performance evaluation for IMU-derived MoCap time-series data is lacking. We address this gap by conducting a comprehensive comparative analysis of statistical, machine learning, and deep learning imputation methods. Our evaluation considers three distinct contexts: univariate time-series, multivariate across subjects, and multivariate across kinematic angles. To facilitate this benchmark, we introduce the first publicly available MoCap dataset designed specifically for imputation, featuring data from 53 karate practitioners. We simulate three controlled missingness mechanisms: missing completely at random (MCAR), block missingness, and a novel value-dependent pattern at signal transition points. Our experiments, conducted on 39 kinematic variables across all subjects, reveal that multivariate imputation frameworks consistently outperform univariate approaches, particularly for complex missingness. For instance, multivariate methods achieve up to a 50% mean absolute error reduction (MAE from 10.8 to 5.8) compared to univariate techniques for transition point missingness. Advanced models like Generative Adversarial Imputation Networks (GAIN) and Iterative Imputers demonstrate the highest accuracy in these challenging scenarios. This work provides a critical baseline for future research and offers practical recommendations for improving the integrity and robustness of Mo-Cap data analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.