Rethinking Inductive Bias in Geographically Neural Network Weighted Regression (2507.09958v1)
Abstract: Inductive bias is a key factor in spatial regression models, determining how well a model can learn from limited data and capture spatial patterns. This work revisits the inductive biases in Geographically Neural Network Weighted Regression (GNNWR) and identifies limitations in current approaches for modeling spatial non-stationarity. While GNNWR extends traditional Geographically Weighted Regression by using neural networks to learn spatial weighting functions, existing implementations are often restricted by fixed distance-based schemes and limited inductive bias. We propose to generalize GNNWR by incorporating concepts from convolutional neural networks, recurrent neural networks, and transformers, introducing local receptive fields, sequential context, and self-attention into spatial regression. Through extensive benchmarking on synthetic spatial datasets with varying heterogeneity, noise, and sample sizes, we show that GNNWR outperforms classic methods in capturing nonlinear and complex spatial relationships. Our results also reveal that model performance depends strongly on data characteristics, with local models excelling in highly heterogeneous or small-sample scenarios, and global models performing better with larger, more homogeneous data. These findings highlight the importance of inductive bias in spatial modeling and suggest future directions, including learnable spatial weighting functions, hybrid neural architectures, and improved interpretability for models handling non-stationary spatial data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.