Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Memory-Augmented SAM2 for Training-Free Surgical Video Segmentation (2507.09577v1)

Published 13 Jul 2025 in cs.CV

Abstract: Surgical video segmentation is a critical task in computer-assisted surgery, essential for enhancing surgical quality and patient outcomes. Recently, the Segment Anything Model 2 (SAM2) framework has demonstrated remarkable advancements in both image and video segmentation. However, the inherent limitations of SAM2's greedy selection memory design are amplified by the unique properties of surgical videos-rapid instrument movement, frequent occlusion, and complex instrument-tissue interaction-resulting in diminished performance in the segmentation of complex, long videos. To address these challenges, we introduce Memory Augmented (MA)-SAM2, a training-free video object segmentation strategy, featuring novel context-aware and occlusion-resilient memory models. MA-SAM2 exhibits strong robustness against occlusions and interactions arising from complex instrument movements while maintaining accuracy in segmenting objects throughout videos. Employing a multi-target, single-loop, one-prompt inference further enhances the efficiency of the tracking process in multi-instrument videos. Without introducing any additional parameters or requiring further training, MA-SAM2 achieved performance improvements of 4.36% and 6.1% over SAM2 on the EndoVis2017 and EndoVis2018 datasets, respectively, demonstrating its potential for practical surgical applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.