Introducing Meta-Fiber into Stacked Intelligent Metasurfaces for MIMO Communications: A Low-Complexity Design with only Two Layers (2507.09575v1)
Abstract: Stacked intelligent metasurfaces (SIMs), which integrate multiple programmable metasurface layers, have recently emerged as a promising technology for advanced wave-domain signal processing. SIMs benefit from flexible spatial degree-of-freedom (DoF) while reducing the requirement for costly radio-frequency (RF) chains. However, current state-of-the-art SIM designs face challenges such as complex phase shift optimization and energy attenuation from multiple layers. To address these aspects, we propose incorporating meta-fibers into SIMs, with the aim of reducing the number of layers and enhancing the energy efficiency. First, we introduce a meta-fiber-connected 2-layer SIM that exhibits the same flexible signal processing capabilities as conventional multi-layer structures, and explains the operating principle. Subsequently, we formulate and solve the optimization problem of minimizing the mean square error (MSE) between the SIM channel and the desired channel matrices. Specifically, by designing the phase shifts of the meta-atoms associated with the transmitting-SIM and receiving-SIM, a non-interference system with parallel subchannels is established. In order to reduce the computational complexity, a closed-form expression for each phase shift at each iteration of an alternating optimization (AO) algorithm is proposed. We show that the proposed algorithm is applicable to conventional multi-layer SIMs. The channel capacity bound and computational complexity are analyzed to provide design insights. Finally, numerical results are illustrated, demonstrating that the proposed two-layer SIM with meta-fiber achieves over a 25% improvement in channel capacity while reducing the total number of meta-atoms by 59% as compared with a conventional seven-layer SIM.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.