Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stacked Intelligent Metasurfaces for Holographic MIMO Aided Cell-Free Networks (2405.09753v1)

Published 16 May 2024 in cs.IT, eess.SP, and math.IT

Abstract: Large-scale multiple-input and multiple-output (MIMO) systems are capable of achieving high date rate. However, given the high hardware cost and excessive power consumption of massive MIMO systems, as a remedy, intelligent metasurfaces have been designed for efficient holographic MIMO (HMIMO) systems. In this paper, we propose a HMIMO architecture based on stacked intelligent metasurfaces (SIM) for the uplink of cell-free systems, where the SIM is employed at the access points (APs) for improving the spectral- and energy-efficiency. Specifically, we conceive distributed beamforming for SIM-assisted cell-free networks, where both the SIM coefficients and the local receiver combiner vectors of each AP are optimized based on the local channel state information (CSI) for the local detection of each user equipment (UE) information. Afterward, the central processing unit (CPU) fuses the local detections gleaned from all APs to detect the aggregate multi-user signal. Specifically, to design the SIM coefficients and the combining vectors of the APs, a low-complexity layer-by-layer iterative optimization algorithm is proposed for maximizing the equivalent gain of the channel spanning from the UEs to the APs. At the CPU, the weight vector used for combining the local detections from all APs is designed based on the minimum mean square error (MMSE) criterion, where the hardware impairments (HWIs) are also taken into consideration based on their statistics. The simulation results show that the SIM-based HMIMO outperforms the conventional single-layer HMIMO in terms of the achievable rate. We demonstrate that both the HWI of the radio frequency (RF) chains at the APs and the UEs limit the achievable rate in the high signal-to-noise-ratio (SNR) region.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. P. Wang, J. Fang, L. Dai, and H. Li, “Joint transceiver and large intelligent surface design for massive MIMO mmWave systems,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1052–1064, 2020.
  2. L. Dai, J. Tan, Z. Chen, and H. V. Poor, “Delay-phase precoding for wideband THz massive MIMO,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7271–7286, 2022.
  3. J. Du, S. Ye, L. Jin, X. Li, H. Q. Ngo, and O. A. Dobre, “Tensor-based joint channel estimation for multi-way massive MIMO hybrid relay systems,” IEEE Trans. Veh. Technol., vol. 71, no. 9, pp. 9571–9585, 2022.
  4. X. Li, M. Zhang, H. Chen, C. Han, L. Li, D.-T. Do, S. Mumtaz, and A. Nallanathan, “UAV-enabled multi-pair massive MIMO-NOMA relay systems with low-resolution ADCs/DACs,” IEEE Trans. Veh. Technol., vol. 73, no. 2, pp. 2171–2186, 2024.
  5. J. Gao, C. Zhong, G. Y. Li, J. B. Soriaga, and A. Behboodi, “Deep learning-based channel estimation for wideband hybrid mmWave massive MIMO,” IEEE Trans. Commun., vol. 71, no. 6, pp. 3679–3693, 2023.
  6. C.-J. Wang, C.-K. Wen, S. Jin, and S.-H. Tsai, “Finite-alphabet precoding for massive MU-MIMO with low-resolution DACs,” IEEE Trans. Wireless Commun., vol. 17, no. 7, pp. 4706–4720, 2018.
  7. L. Yang, J. Yang, W. Xie, M. O. Hasna, T. Tsiftsis, and M. Di Renzo, “Secrecy performance analysis of RIS-aided wireless communication systems,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12 296–12 300, 2020.
  8. L. Yang, F. Meng, J. Zhang, M. O. Hasna, and M. Di Renzo, “On the performance of RIS-assisted dual-hop UAV communication systems,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10 385–10 390, 2020.
  9. L. V. Nguyen, A. L. Swindlehurst, and D. H. Nguyen, “Linear and deep neural network-based receivers for massive MIMO systems with one-bit ADCs,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7333–7345, 2021.
  10. Q. Li, M. El-Hajjar, I. Hemadeh, A. Shojaeifard, A. A. Mourad, B. Clerckx, and L. Hanzo, “Reconfigurable intelligent surfaces relying on non-diagonal phase shift matrices,” IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6367–6383, 2022.
  11. C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. Di Renzo, and M. Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 5, pp. 118–125, 2020.
  12. Q. Li, M. El-Hajjar, I. Hemadeh, D. Jagyasi, A. Shojaeifard, E. Basar, and L. Hanzo, “The reconfigurable intelligent surface-aided multi-node IoT downlink: Beamforming design and performance analysis,” IEEE Internet Things J., vol. 10, no. 7, pp. 6400–6414, 2022.
  13. Q. Li, M. El-Hajjar, I. Hemadeh, A. Shojaeifard, A. A. Mourad, and L. Hanzo, “Reconfigurable intelligent surface aided amplitude-and phase-modulated downlink transmission,” IEEE Trans. Veh. Technol., vol. 72, no. 6, pp. 8146–8151, 2023.
  14. I. Yoo and D. R. Smith, “Sub-6-Ghz uplink massive MIMO system using holographic beamforming metasurfaces: A conceptual development,” IEEE Wireless Commun. Lett., vol. 12, no. 4, pp. 644–648, 2023.
  15. R. Deng, Y. Zhang, H. Zhang, B. Di, H. Zhang, and L. Song, “Reconfigurable holographic surface: A new paradigm to implement holographic radio,” IEEE Veh. Technol. Mag., vol. 18, no. 1, pp. 20–28, 2023.
  16. T. Gong, P. Gavriilidis, R. Ji, C. Huang, G. C. Alexandropoulos, L. Wei, Z. Zhang, M. Debbah, H. V. Poor, and C. Yuen, “Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions,” IEEE Commun. Surv. Tutor., vol. 26, no. 1, pp. 196–257, 2024.
  17. J. An, C. Yuen, C. Huang, M. Debbah, H. V. Poor, and L. Hanzo, “A tutorial on holographic MIMO communication–Part I: Channel modeling and channel estimation,” IEEE Commun. Lett., vol. 27, no. 7, pp. 1664–1668, 2023.
  18. S. Zeng, H. Zhang, B. Di, H. Qin, X. Su, and L. Song, “Reconfigurable refractive surfaces: An energy-efficient way to holographic MIMO,” IEEE Commun. Lett., vol. 26, no. 10, pp. 2490–2494, 2022.
  19. R. Deng, B. Di, H. Zhang, Y. Tan, and L. Song, “Reconfigurable holographic surface: Holographic beamforming for metasurface-aided wireless communications,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 6255–6259, 2021.
  20. R. Deng, B. Di, H. Zhang, and L. Song, “HDMA: Holographic-pattern division multiple access,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1317–1332, 2022.
  21. R. Deng, B. Di, H. Zhang, D. Niyato, Z. Han, H. V. Poor, and L. Song, “Reconfigurable holographic surfaces for future wireless communications,” IEEE Wireless Commun., vol. 28, no. 6, pp. 126–131, 2021.
  22. X. Hu, R. Deng, B. Di, H. Zhang, and L. Song, “Holographic beamforming for ultra massive MIMO with limited radiation amplitudes: How many quantized bits do we need?” IEEE Commun. Lett., vol. 26, no. 6, pp. 1403–1407, 2022.
  23. R. Deng, B. Di, H. Zhang, H. V. Poor, and L. Song, “Holographic MIMO for LEO satellite communications aided by reconfigurable holographic surfaces,” IEEE J. Sel. Areas Commun., vol. 40, no. 10, pp. 3071–3085, 2022.
  24. X. Hu, R. Deng, B. Di, H. Zhang, and L. Song, “Holographic beamforming for LEO satellites,” IEEE Commun. Lett., vol. 27, no. 10, pp. 2717–2721, 2023.
  25. L. Wei, C. Huang, G. C. Alexandropoulos, E. Wei, Z. Zhang, M. Debbah, and C. Yuen, “Multi-user holographic MIMO surfaces: Channel modeling and spectral efficiency analysis,” IEEE J. Sel. Top. Signal Process., vol. 16, no. 5, pp. 1112–1124, 2022.
  26. H. Wu, Y. Chen, Y. Ming, and Z. Wang, “Two-timescale beamforming optimization for downlink multi-user holographic MIMO surfaces,” IEEE Trans. Veh. Technol., vol. 73, no. 3, pp. 4476–4481, 2023.
  27. N. Shlezinger, O. Dicker, Y. C. Eldar, I. Yoo, M. F. Imani, and D. R. Smith, “Dynamic metasurface antennas for uplink massive MIMO systems,” IEEE Trans. Commun., vol. 67, no. 10, pp. 6829–6843, 2019.
  28. H. Wang, N. Shlezinger, S. Jin, Y. C. Eldar, I. Yoo, M. F. Imani, and D. R. Smith, “Dynamic metasurface antennas based downlink massive MIMO systems,” in 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).   IEEE, 2019, pp. 1–5.
  29. L. You, J. Xu, G. C. Alexandropoulos, J. Wang, W. Wang, and X. Gao, “Energy efficiency maximization of massive MIMO communications with dynamic metasurface antennas,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 393–407, 2022.
  30. Y. Li, S. Gong, H. Liu, C. Xing, N. Zhao, and X. Wang, “Near-field beamforming optimization for holographic XL-MIMO multiuser systems,” IEEE Trans. Commun., vol. 72, no. 4, pp. 2309–2323, 2024.
  31. J. An, C. Xu, D. W. K. Ng, G. C. Alexandropoulos, C. Huang, C. Yuen, and L. Hanzo, “Stacked intelligent metasurfaces for efficient holographic MIMO communications in 6G,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2380–2396, 2023.
  32. J. An, C. Yuen, C. Xu, H. Li, D. W. K. Ng, M. Di Renzo, M. Debbah, and L. Hanzo, “Stacked intelligent metasurface-aided MIMO transceiver design,” IEEE Wireless Commun., 2024.
  33. S. Chen, J. Zhang, E. Björnson, J. Zhang, and B. Ai, “Structured massive access for scalable cell-free massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 4, pp. 1086–1100, 2020.
  34. W. Xu, J. An, H. Li, L. Gan, and C. Yuen, “Algorithm unrolling-based distributed optimization for RIS-assisted cell-free networks,” IEEE Internet Things J., vol. 11, no. 1, pp. 944–957, 2024.
  35. J. Xu, L. You, G. C. Alexandropoulos, X. Yi, W. Wang, and X. Gao, “Near-field wideband extremely large-scale MIMO transmissions with holographic metasurface-based antenna arrays,” IEEE Trans. Wireless Commun., 2024.
  36. C. Liu, Q. Ma, Z. J. Luo, Q. R. Hong, Q. Xiao, H. C. Zhang, L. Miao, W. M. Yu, Q. Cheng, L. Li et al., “A programmable diffractive deep neural network based on a digital-coding metasurface array,” Nature Electronics, vol. 5, no. 2, pp. 113–122, 2022.
  37. J. An, C. Yuen, Y. L. Guan, M. Di Renzo, M. Debbah, H. V. Poor, and L. Hanzo, “Two-dimensional direction-of-arrival estimation using stacked intelligent metasurfaces,” arXiv preprint arXiv:2402.08224, 2024.
  38. H. Lu and Y. Zeng, “Communicating with extremely large-scale array/surface: Unified modeling and performance analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4039–4053, 2021.
  39. Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and channel estimation for holographic massive MIMO with planar arrays,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 997–1001, 2022.
  40. M. Cui and L. Dai, “Channel estimation for extremely large-scale MIMO: Far-field or near-field?” IEEE Trans. Commun., vol. 70, no. 4, pp. 2663–2677, 2022.
  41. I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo, “Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget,” IEEE Commun. Surv. Tutor., vol. 20, no. 2, pp. 870–913, 2017.
  42. E. Björnson, J. Hoydis, L. Sanguinetti et al., “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Foundations and Trends® in Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.
  43. Q. Li, M. El-Hajjar, Y. Sun, I. Hemadeh, A. Shojaeifard, Y. Liu, and L. Hanzo, “Achievable rate analysis of the STAR-RIS aided NOMA uplink in the face of imperfect CSI and hardware impairments,” IEEE Trans. Commun., vol. 71, no. 10, pp. 6100–6114, 2023.
  44. Ö. T. Demir, E. Björnson, L. Sanguinetti et al., “Foundations of user-centric cell-free massive MIMO,” Foundations and Trends® in Signal Processing, vol. 14, no. 3-4, pp. 162–472, 2021.
  45. R. Deng, B. Di, H. Zhang, Y. Tan, and L. Song, “Reconfigurable holographic surface-enabled multi-user wireless communications: Amplitude-controlled holographic beamforming,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 6003–6017, 2022.
Citations (12)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com