Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Clinical Text Classification via Fine-Tuned DRAGON Longformer Models (2507.09470v1)

Published 13 Jul 2025 in cs.CL and cs.AI

Abstract: This study explores the optimization of the DRAGON Longformer base model for clinical text classification, specifically targeting the binary classification of medical case descriptions. A dataset of 500 clinical cases containing structured medical observations was used, with 400 cases for training and 100 for validation. Enhancements to the pre-trained joeranbosma/dragon-longformer-base-mixed-domain model included hyperparameter tuning, domain-specific preprocessing, and architectural adjustments. Key modifications involved increasing sequence length from 512 to 1024 tokens, adjusting learning rates from 1e-05 to 5e-06, extending training epochs from 5 to 8, and incorporating specialized medical terminology. The optimized model achieved notable performance gains: accuracy improved from 72.0% to 85.2%, precision from 68.0% to 84.1%, recall from 75.0% to 86.3%, and F1-score from 71.0% to 85.2%. Statistical analysis confirmed the significance of these improvements (p < .001). The model demonstrated enhanced capability in interpreting medical terminology, anatomical measurements, and clinical observations. These findings contribute to domain-specific LLM research and offer practical implications for clinical natural language processing applications. The optimized model's strong performance across diverse medical conditions underscores its potential for broad use in healthcare settings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.