Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fourier Basis Mapping: A Time-Frequency Learning Framework for Time Series Forecasting (2507.09445v1)

Published 13 Jul 2025 in cs.LG, cs.AI, and stat.ML

Abstract: The integration of Fourier transform and deep learning opens new avenues for time series forecasting. We reconsider the Fourier transform from a basis functions perspective. Specifically, the real and imaginary parts of the frequency components can be regarded as the coefficients of cosine and sine basis functions at tiered frequency levels, respectively. We find that existing Fourier-based methods face inconsistent starting cycles and inconsistent series length issues. They fail to interpret frequency components precisely and overlook temporal information. Accordingly, the novel Fourier Basis Mapping (FBM) method addresses these issues by integrating time-frequency features through Fourier basis expansion and mapping in the time-frequency space. Our approach extracts explicit frequency features while preserving temporal characteristics. FBM supports plug-and-play integration with various types of neural networks by only adjusting the first initial projection layer for better performance. First, we propose FBM-L, FBM-NL, and FBM-NP to enhance linear, MLP-based, and Transformer-based models, respectively, demonstrating the effectiveness of time-frequency features. Next, we propose a synergetic model architecture, termed FBM-S, which decomposes the seasonal, trend, and interaction effects into three separate blocks, each designed to model time-frequency features in a specialized manner. Finally, we introduce several techniques tailored for time-frequency features, including interaction masking, centralization, patching, rolling window projection, and multi-scale down-sampling. The results are validated on diverse real-world datasets for both long-term and short-term forecasting tasks with SOTA performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.