Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Optimal Differentially Private Ranking from Pairwise Comparisons (2507.09388v1)

Published 12 Jul 2025 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: Data privacy is a central concern in many applications involving ranking from incomplete and noisy pairwise comparisons, such as recommendation systems, educational assessments, and opinion surveys on sensitive topics. In this work, we propose differentially private algorithms for ranking based on pairwise comparisons. Specifically, we develop and analyze ranking methods under two privacy notions: edge differential privacy, which protects the confidentiality of individual comparison outcomes, and individual differential privacy, which safeguards potentially many comparisons contributed by a single individual. Our algorithms--including a perturbed maximum likelihood estimator and a noisy count-based method--are shown to achieve minimax optimal rates of convergence under the respective privacy constraints. We further demonstrate the practical effectiveness of our methods through experiments on both simulated and real-world data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.