Papers
Topics
Authors
Recent
2000 character limit reached

Meta-autoencoders: An approach to discovery and representation of relationships between dynamically evolving classes (2507.09362v1)

Published 12 Jul 2025 in cs.LG and q-bio.PE

Abstract: An autoencoder (AE) is a neural network that, using self-supervised training, learns a succinct parameterized representation, and a corresponding encoding and decoding process, for all instances in a given class. Here, we introduce the concept of a meta-autoencoder (MAE): an AE for a collection of autoencoders. Given a family of classes that differ from each other by the values of some parameters, and a trained AE for each class, an MAE for the family is a neural net that has learned a compact representation and associated encoder and decoder for the class-specific AEs. One application of this general concept is in research and modeling of natural evolution -- capturing the defining and the distinguishing properties across multiple species that are dynamically evolving from each other and from common ancestors. In this interim report we provide a constructive definition of MAEs, initial examples, and the motivating research directions in machine learning and biology.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.