A Fairness-Oriented Multi-Objective Reinforcement Learning approach for Autonomous Intersection Management (2507.09311v1)
Abstract: This study introduces a novel multi-objective reinforcement learning (MORL) approach for autonomous intersection management, aiming to balance traffic efficiency and environmental sustainability across electric and internal combustion vehicles. The proposed method utilizes MORL to identify Pareto-optimal policies, with a post-hoc fairness criterion guiding the selection of the final policy. Simulation results in a complex intersection scenario demonstrate the approach's effectiveness in optimizing traffic efficiency and emissions reduction while ensuring fairness across vehicle categories. We believe that this criterion can lay the foundation for ensuring equitable service, while fostering safe, efficient, and sustainable practices in smart urban mobility.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.