Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning from Synthetic Labs: Language Models as Auction Participants (2507.09083v1)

Published 12 Jul 2025 in cs.GT and cs.AI

Abstract: This paper investigates the behavior of simulated AI agents (LLMs, or LLMs) in auctions, introducing a novel synthetic data-generating process to help facilitate the study and design of auctions. We find that LLMs -- when endowed with chain of thought reasoning capacity -- agree with the experimental literature in auctions across a variety of classic auction formats. In particular, we find that LLM bidders produce results consistent with risk-averse human bidders; that they perform closer to theoretical predictions in obviously strategy-proof auctions; and, that they succumb to the winner's curse in common value settings. On prompting, we find that LLMs are not very sensitive to naive changes in prompts (e.g., language, currency) but can improve dramatically towards theoretical predictions with the right mental model (i.e., the language of Nash deviations). We run 1,000$+$ auctions for less than $\$$400 with GPT-4 models (three orders of magnitude cheaper than modern auction experiments) and develop a framework flexible enough to run auction experiments with any LLM model and a wide range of auction design specifications, facilitating further experimental study by decreasing costs and serving as a proof-of-concept for the use of LLM proxies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube