2000 character limit reached
Estimating Marginal Likelihoods in Likelihood-Free Inference via Neural Density Estimation (2507.08734v1)
Published 11 Jul 2025 in stat.CO
Abstract: The marginal likelihood, or evidence, plays a central role in Bayesian model selection, yet remains notoriously challenging to compute in likelihood-free settings. While Simulation-Based Inference (SBI) techniques such as Sequential Neural Likelihood Estimation (SNLE) offer powerful tools to approximate posteriors using neural density estimators, they typically do not provide estimates of the evidence. In this technical report presented at BayesComp 2025, we present a simple and general methodology to estimate the marginal likelihood using the output of SNLE.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.