Semantic-Augmented Latent Topic Modeling with LLM-in-the-Loop (2507.08498v1)
Abstract: Latent Dirichlet Allocation (LDA) is a prominent generative probabilistic model used for uncovering abstract topics within document collections. In this paper, we explore the effectiveness of augmenting topic models with LLMs through integration into two key phases: Initialization and Post-Correction. Since the LDA is highly dependent on the quality of its initialization, we conduct extensive experiments on the LLM-guided topic clustering for initializing the Gibbs sampling algorithm. Interestingly, the experimental results reveal that while the proposed initialization strategy improves the early iterations of LDA, it has no effect on the convergence and yields the worst performance compared to the baselines. The LLM-enabled post-correction, on the other hand, achieved a promising improvement of 5.86% in the coherence evaluation. These results highlight the practical benefits of the LLM-in-the-loop approach and challenge the belief that LLMs are always the superior text mining alternative.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.