Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

F3-Net: Foundation Model for Full Abnormality Segmentation of Medical Images with Flexible Input Modality Requirement (2507.08460v1)

Published 11 Jul 2025 in cs.CV

Abstract: F3-Net is a foundation model designed to overcome persistent challenges in clinical medical image segmentation, including reliance on complete multimodal inputs, limited generalizability, and narrow task specificity. Through flexible synthetic modality training, F3-Net maintains robust performance even in the presence of missing MRI sequences, leveraging a zero-image strategy to substitute absent modalities without relying on explicit synthesis networks, thereby enhancing real-world applicability. Its unified architecture supports multi-pathology segmentation across glioma, metastasis, stroke, and white matter lesions without retraining, outperforming CNN-based and transformer-based models that typically require disease-specific fine-tuning. Evaluated on diverse datasets such as BraTS 2021, BraTS 2024, and ISLES 2022, F3-Net demonstrates strong resilience to domain shifts and clinical heterogeneity. On the whole pathology dataset, F3-Net achieves average Dice Similarity Coefficients (DSCs) of 0.94 for BraTS-GLI 2024, 0.82 for BraTS-MET 2024, 0.94 for BraTS 2021, and 0.79 for ISLES 2022. This positions it as a versatile, scalable solution bridging the gap between deep learning research and practical clinical deployment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube