Papers
Topics
Authors
Recent
2000 character limit reached

Diagnosing Failures in Large Language Models' Answers: Integrating Error Attribution into Evaluation Framework (2507.08459v1)

Published 11 Jul 2025 in cs.CL

Abstract: With the widespread application of LLMs in various tasks, the mainstream LLM platforms generate massive user-model interactions daily. In order to efficiently analyze the performance of models and diagnose failures in their answers, it is essential to develop an automated framework to systematically categorize and attribute errors. However, existing evaluation models lack error attribution capability. In this work, we establish a comprehensive Misattribution Framework with 6 primary and 15 secondary categories to facilitate in-depth analysis. Based on this framework, we present AttriData, a dataset specifically designed for error attribution, encompassing misattribution, along with the corresponding scores and feedback. We also propose MisAttributionLLM, a fine-tuned model on AttriData, which is the first general-purpose judge model capable of simultaneously generating score, misattribution, and feedback. Extensive experiments and analyses are conducted to confirm the effectiveness and robustness of our proposed method.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.