Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Understanding Driving Risks using Large Language Models: Toward Elderly Driver Assessment (2507.08367v1)

Published 11 Jul 2025 in cs.CV, cs.SY, and eess.SY

Abstract: This study investigates the potential of a multimodal LLM, specifically ChatGPT-4o, to perform human-like interpretations of traffic scenes using static dashcam images. Herein, we focus on three judgment tasks relevant to elderly driver assessments: evaluating traffic density, assessing intersection visibility, and recognizing stop signs recognition. These tasks require contextual reasoning rather than simple object detection. Using zero-shot, few-shot, and multi-shot prompting strategies, we evaluated the performance of the model with human annotations serving as the reference standard. Evaluation metrics included precision, recall, and F1-score. Results indicate that prompt design considerably affects performance, with recall for intersection visibility increasing from 21.7% (zero-shot) to 57.0% (multi-shot). For traffic density, agreement increased from 53.5% to 67.6%. In stop-sign detection, the model demonstrated high precision (up to 86.3%) but a lower recall (approximately 76.7%), indicating a conservative response tendency. Output stability analysis revealed that humans and the model faced difficulties interpreting structurally ambiguous scenes. However, the model's explanatory texts corresponded with its predictions, enhancing interpretability. These findings suggest that, with well-designed prompts, LLMs hold promise as supportive tools for scene-level driving risk assessments. Future studies should explore scalability using larger datasets, diverse annotators, and next-generation model architectures for elderly driver assessments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.