CoCo-Bot: Energy-based Composable Concept Bottlenecks for Interpretable Generative Models
Abstract: Concept Bottleneck Models (CBMs) provide interpretable and controllable generative modeling by routing generation through explicit, human-understandable concepts. However, previous generative CBMs often rely on auxiliary visual cues at the bottleneck to compensate for information not captured by the concepts, which undermines interpretability and compositionality. We propose CoCo-Bot, a post-hoc, composable concept bottleneck generative model that eliminates the need for auxiliary cues by transmitting all information solely through explicit concepts. Guided by diffusion-based energy functions, CoCo-Bot supports robust post-hoc interventions-such as concept composition and negation-across arbitrary concepts. Experiments using StyleGAN2 pre-trained on CelebA-HQ show that CoCo-Bot improves concept-level controllability and interpretability, while maintaining competitive visual quality.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.