Papers
Topics
Authors
Recent
2000 character limit reached

A Dynamic Stackelberg Game Framework for Agentic AI Defense Against LLM Jailbreaking (2507.08207v1)

Published 10 Jul 2025 in cs.AI

Abstract: As LLMs are increasingly deployed in critical applications, the challenge of jailbreaking, where adversaries manipulate the models to bypass safety mechanisms, has become a significant concern. This paper presents a dynamic Stackelberg game framework to model the interactions between attackers and defenders in the context of LLM jailbreaking. The framework treats the prompt-response dynamics as a sequential extensive-form game, where the defender, as the leader, commits to a strategy while anticipating the attacker's optimal responses. We propose a novel agentic AI solution, the "Purple Agent," which integrates adversarial exploration and defensive strategies using Rapidly-exploring Random Trees (RRT). The Purple Agent actively simulates potential attack trajectories and intervenes proactively to prevent harmful outputs. This approach offers a principled method for analyzing adversarial dynamics and provides a foundation for mitigating the risk of jailbreaking.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.