Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deep Survival Analysis in Multimodal Medical Data: A Parametric and Probabilistic Approach with Competing Risks (2507.07804v1)

Published 10 Jul 2025 in cs.LG

Abstract: Accurate survival prediction is critical in oncology for prognosis and treatment planning. Traditional approaches often rely on a single data modality, limiting their ability to capture the complexity of tumor biology. To address this challenge, we introduce a multimodal deep learning framework for survival analysis capable of modeling both single and competing risks scenarios, evaluating the impact of integrating multiple medical data sources on survival predictions. We propose SAMVAE (Survival Analysis Multimodal Variational Autoencoder), a novel deep learning architecture designed for survival prediction that integrates six data modalities: clinical variables, four molecular profiles, and histopathological images. SAMVAE leverages modality specific encoders to project inputs into a shared latent space, enabling robust survival prediction while preserving modality specific information. Its parametric formulation enables the derivation of clinically meaningful statistics from the output distributions, providing patient-specific insights through interactive multimedia that contribute to more informed clinical decision-making and establish a foundation for interpretable, data-driven survival analysis in oncology. We evaluate SAMVAE on two cancer cohorts breast cancer and lower grade glioma applying tailored preprocessing, dimensionality reduction, and hyperparameter optimization. The results demonstrate the successful integration of multimodal data for both standard survival analysis and competing risks scenarios across different datasets. Our model achieves competitive performance compared to state-of-the-art multimodal survival models. Notably, this is the first parametric multimodal deep learning architecture to incorporate competing risks while modeling continuous time to a specific event, using both tabular and image data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube