Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

EAGLE: Efficient Alignment of Generalized Latent Embeddings for Multimodal Survival Prediction with Interpretable Attribution Analysis (2506.22446v1)

Published 12 Jun 2025 in cs.LG and cs.AI

Abstract: Accurate cancer survival prediction requires integration of diverse data modalities that reflect the complex interplay between imaging, clinical parameters, and textual reports. However, existing multimodal approaches suffer from simplistic fusion strategies, massive computational requirements, and lack of interpretability-critical barriers to clinical adoption. We present EAGLE (Efficient Alignment of Generalized Latent Embeddings), a novel deep learning framework that addresses these limitations through attention-based multimodal fusion with comprehensive attribution analysis. EAGLE introduces four key innovations: (1) dynamic cross-modal attention mechanisms that learn hierarchical relationships between modalities, (2) massive dimensionality reduction (99.96%) while maintaining predictive performance, (3) three complementary attribution methods providing patient-level interpretability, and (4) a unified pipeline enabling seamless adaptation across cancer types. We evaluated EAGLE on 911 patients across three distinct malignancies: glioblastoma (GBM, n=160), intraductal papillary mucinous neoplasms (IPMN, n=171), and non-small cell lung cancer (NSCLC, n=580). Patient-level analysis showed high-risk individuals relied more heavily on adverse imaging features, while low-risk patients demonstrated balanced modality contributions. Risk stratification identified clinically meaningful groups with 4-fold (GBM) to 5-fold (NSCLC) differences in median survival, directly informing treatment intensity decisions. By combining state-of-the-art performance with clinical interpretability, EAGLE bridges the gap between advanced AI capabilities and practical healthcare deployment, offering a scalable solution for multimodal survival prediction that enhances both prognostic accuracy and physician trust in automated predictions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube