Papers
Topics
Authors
Recent
2000 character limit reached

Not All Preferences are What You Need for Post-Training: Selective Alignment Strategy for Preference Optimization (2507.07725v1)

Published 10 Jul 2025 in cs.CL and cs.AI

Abstract: Post-training alignment of LLMs is a critical challenge, as not all tokens contribute equally to model performance. This paper introduces a selective alignment strategy that prioritizes high-impact tokens within preference pairs, leveraging token-level log-probability differences between the current policy and a reference model. By focusing on these informative tokens, our approach reduces computational overhead and enhances alignment fidelity. We further explore the role of reference model quality, demonstrating that stronger reference models significantly improve token selection accuracy and overall optimization effectiveness. Comprehensive experiments on benchmarks such as Arena-Hard and MT-Bench validate the superiority of our Selective-DPO method over standard DPO and distillation-based baselines. Our findings highlight the importance of token-level optimization and reference model selection in advancing preference alignment for LLMs. The code is available at https://github.com/Dongzhijin/SDPO.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.