Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Synthetic MC via Biological Transmitters: Therapeutic Modulation of the Gut-Brain Axis (2507.07604v1)

Published 10 Jul 2025 in cs.LG, q-bio.QM, and q-bio.TO

Abstract: Synthetic molecular communication (SMC) is a key enabler for future healthcare systems in which Internet of Bio-Nano-Things (IoBNT) devices facilitate the continuous monitoring of a patient's biochemical signals. To close the loop between sensing and actuation, both the detection and the generation of in-body molecular communication (MC) signals is key. However, generating signals inside the human body, e.g., via synthetic nanodevices, poses a challenge in SMC, due to technological obstacles as well as legal, safety, and ethical issues. Hence, this paper considers an SMC system in which signals are generated indirectly via the modulation of a natural in-body MC system, namely the gut-brain axis (GBA). Therapeutic GBA modulation is already established as treatment for neurological diseases, e.g., drug refractory epilepsy (DRE), and performed via the administration of nutritional supplements or specific diets. However, the molecular signaling pathways that mediate the effect of such treatments are mostly unknown. Consequently, existing treatments are standardized or designed heuristically and able to help only some patients while failing to help others. In this paper, we propose to leverage personal health data, e.g., gathered by in-body IoBNT devices, to design more versatile and robust GBA modulation-based treatments as compared to the existing ones. To show the feasibility of our approach, we define a catalog of theoretical requirements for therapeutic GBA modulation. Then, we propose a machine learning model to verify these requirements for practical scenarios when only limited data on the GBA modulation exists. By evaluating the proposed model on several datasets, we confirm its excellent accuracy in identifying different modulators of the GBA. Finally, we utilize the proposed model to identify specific modulatory pathways that play an important role for therapeutic GBA modulation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 16 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube