Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DAF: An Efficient End-to-End Dynamic Activation Framework for on-Device DNN Training (2507.07149v1)

Published 9 Jul 2025 in cs.NI and cs.LG

Abstract: Recent advancements in on-device training for deep neural networks have underscored the critical need for efficient activation compression to overcome the memory constraints of mobile and edge devices. As activations dominate memory usage during training and are essential for gradient computation, compressing them without compromising accuracy remains a key research challenge. While existing methods for dynamic activation quantization promise theoretical memory savings, their practical deployment is impeded by system-level challenges such as computational overhead and memory fragmentation. To address these challenges, we introduce DAF, a Dynamic Activation Framework that enables scalable and efficient on-device training through system-level optimizations. DAF achieves both memory- and time-efficient dynamic quantization training by addressing key system bottlenecks. It develops hybrid reduction operations tailored to the memory hierarchies of mobile and edge SoCs, leverages collaborative CPU-GPU bit-packing for efficient dynamic quantization, and implements an importance-aware paging memory management scheme to reduce fragmentation and support dynamic memory adjustments. These optimizations collectively enable DAF to achieve substantial memory savings and speedup without compromising model training accuracy. Evaluations on various deep learning models across embedded and mobile platforms demonstrate up to a $22.9\times$ reduction in memory usage and a $3.2\times$ speedup, making DAF a scalable and practical solution for resource-constrained environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: