Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An attention-aware GNN-based input defender against multi-turn jailbreak on LLMs (2507.07146v1)

Published 9 Jul 2025 in cs.LG

Abstract: LLMs have gained widespread popularity and are increasingly integrated into various applications. However, their capabilities can be exploited for both benign and harmful purposes. Despite rigorous training and fine-tuning for safety, LLMs remain vulnerable to jailbreak attacks. Recently, multi-turn attacks have emerged, exacerbating the issue. Unlike single-turn attacks, multi-turn attacks gradually escalate the dialogue, making them more difficult to detect and mitigate, even after they are identified. In this study, we propose G-Guard, an innovative attention-aware GNN-based input classifier designed to defend against multi-turn jailbreak attacks on LLMs. G-Guard constructs an entity graph for multi-turn queries, explicitly capturing relationships between harmful keywords and queries even when those keywords appear only in previous queries. Additionally, we introduce an attention-aware augmentation mechanism that retrieves the most similar single-turn query based on the multi-turn conversation. This retrieved query is treated as a labeled node in the graph, enhancing the ability of GNN to classify whether the current query is harmful. Evaluation results demonstrate that G-Guard outperforms all baselines across all datasets and evaluation metrics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.