M$^2$-MFP: A Multi-Scale and Multi-Level Memory Failure Prediction Framework for Reliable Cloud Infrastructure (2507.07144v1)
Abstract: As cloud services become increasingly integral to modern IT infrastructure, ensuring hardware reliability is essential to sustain high-quality service. Memory failures pose a significant threat to overall system stability, making accurate failure prediction through the analysis of memory error logs (i.e., Correctable Errors) imperative. Existing memory failure prediction approaches have notable limitations: rule-based expert models suffer from limited generalizability and low recall rates, while automated feature extraction methods exhibit suboptimal performance. To address these limitations, we propose M$2$-MFP: a Multi-scale and hierarchical memory failure prediction framework designed to enhance the reliability and availability of cloud infrastructure. M$2$-MFP converts Correctable Errors (CEs) into multi-level binary matrix representations and introduces a Binary Spatial Feature Extractor (BSFE) to automatically extract high-order features at both DIMM-level and bit-level. Building upon the BSFE outputs, we develop a dual-path temporal modeling architecture: 1) a time-patch module that aggregates multi-level features within observation windows, and 2) a time-point module that employs interpretable rule-generation trees trained on bit-level patterns. Experiments on both benchmark datasets and real-world deployment show the superiority of M$2$-MFP as it outperforms existing state-of-the-art methods by significant margins. Code and data are available at this repository: https://github.com/hwcloud-RAS/M2-MFP.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.