Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

DeepRetro: Retrosynthetic Pathway Discovery using Iterative LLM Reasoning (2507.07060v1)

Published 7 Jul 2025 in q-bio.QM, cs.AI, cs.CL, cs.LG, q-bio.BM, and q-bio.MN

Abstract: Retrosynthesis, the identification of precursor molecules for a target compound, is pivotal for synthesizing complex molecules, but faces challenges in discovering novel pathways beyond predefined templates. Recent LLM approaches to retrosynthesis have shown promise but effectively harnessing LLM reasoning capabilities for effective multi-step planning remains an open question. To address this challenge, we introduce DeepRetro, an open-source, iterative, hybrid LLM-based retrosynthetic framework. Our approach integrates the strengths of conventional template-based/Monte Carlo tree search tools with the generative power of LLMs in a step-wise, feedback-driven loop. Initially, synthesis planning is attempted with a template-based engine. If this fails, the LLM subsequently proposes single-step retrosynthetic disconnections. Crucially, these suggestions undergo rigorous validity, stability, and hallucination checks before the resulting precursors are recursively fed back into the pipeline for further evaluation. This iterative refinement allows for dynamic pathway exploration and correction. We demonstrate the potential of this pipeline through benchmark evaluations and case studies, showcasing its ability to identify viable and potentially novel retrosynthetic routes. In particular, we develop an interactive graphical user interface that allows expert human chemists to provide human-in-the-loop feedback to the reasoning algorithm. This approach successfully generates novel pathways for complex natural product compounds, demonstrating the potential for iterative LLM reasoning to advance state-of-art in complex chemical syntheses.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 50 likes.

Upgrade to Pro to view all of the tweets about this paper: