Noisy PDE Training Requires Bigger PINNs (2507.06967v1)
Abstract: Physics-Informed Neural Networks (PINNs) are increasingly used to approximate solutions of partial differential equations (PDEs), especially in high dimensions. In real-world applications, data samples are noisy, so it is important to know when a predictor can still achieve low empirical risk. However, little is known about the conditions under which a PINN can do so effectively. We prove a lower bound on the size of neural networks required for the supervised PINN empirical risk to fall below the variance of noisy supervision labels. Specifically, if a predictor achieves an empirical risk $O(\eta)$ below $\sigma2$ (variance of supervision data), then necessarily $d_N\log d_N\gtrsim N_s \eta2$, where $N_s$ is the number of samples and $d_N$ is the number of trainable parameters of the PINN. A similar constraint applies to the fully unsupervised PINN setting when boundary labels are sampled noisily. Consequently, increasing the number of noisy supervision labels alone does not provide a ``free lunch'' in reducing empirical risk. We also show empirically that PINNs can indeed achieve empirical risks below $\sigma2$ under such conditions. As a case study, we investigate PINNs applied to the Hamilton--Jacobi--Bellman (HJB) PDE. Our findings lay the groundwork for quantitatively understanding the parameter requirements for training PINNs in the presence of noise.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.