Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Metropolis-adjusted Subdifferential Langevin Algorithm (2507.06950v1)

Published 9 Jul 2025 in stat.ME

Abstract: The Metropolis-Adjusted Langevin Algorithm (MALA) is a widely used Markov Chain Monte Carlo (MCMC) method for sampling from high-dimensional distributions. However, MALA relies on differentiability assumptions that restrict its applicability. In this paper, we introduce the Metropolis-Adjusted Subdifferential Langevin Algorithm (MASLA), a generalization of MALA that extends its applicability to distributions whose log-densities are locally Lipschitz, generally non-differentiable, and non-convex. We evaluate the performance of MASLA by comparing it with other sampling algorithms in settings where they are applicable. Our results demonstrate the effectiveness of MASLA in handling a broader class of distributions while maintaining computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.