Papers
Topics
Authors
Recent
2000 character limit reached

Robust Deep Network Learning of Nonlinear Regression Tasks by Parametric Leaky Exponential Linear Units (LELUs) and a Diffusion Metric (2507.06765v1)

Published 9 Jul 2025 in cs.LG

Abstract: This document proposes a parametric activation function (ac.f.) aimed at improving multidimensional nonlinear data regression. It is a established knowledge that nonlinear ac.f.'s are required for learning nonlinear datasets. This work shows that smoothness and gradient properties of the ac.f. further impact the performance of large neural networks in terms of overfitting and sensitivity to model parameters. Smooth but vanishing-gradient ac.f.'s such as ELU or SiLU have limited performance and non-smooth ac.f.'s such as RELU and Leaky-RELU further impart discontinuity in the trained model. Improved performance is demonstrated with a smooth "Leaky Exponential Linear Unit", with non-zero gradient that can be trained. A novel diffusion-loss metric is also proposed to gauge the performance of the trained models in terms of overfitting.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.